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I. INTRODUCTION

Modern cosmology, based on the FLRW metric [1],
which is well-known solution to Einstein’s equations,
gives no guidance concerning the equation of state, p =
ωρ in the cosmic fluid. The standard model partitions
the total energy density ρ and total pressure p into three
primary components[2]: matter ρm, radiation ρr, and an
unknown dark energy ρde, which is assumed to be a cos-
mological constant in ΛCDM model with ωΛ = −1. For
the others, the standard model assumes that ωm = 0 and
ωr = − 1

3 .
However, the standard model of cosmology is today

confronted with several inconsistencies and unpalatable
coincidences even though it represents the most success-
ful attempt at accounting for the cosmological observa-
tions. For example, the Hubble tension has emerged
as a major challenge in modern cosmology, reflecting
a persistent discrepancy between measurements of the
Hubble constant (H0) from early-Universe observations
and late-Universe distance ladder methods. While mea-
surements of the cosmic microwave background (CMB)
through the ΛCDM framework have converged to a value
of H0 ∼ 67− 68kms−1Mpc−1, late-Universe probes such
as Cepheid-calibrated Type Ia supernovae consistently
yield H0 ∼ 73 − 74kms−1Mpc−1. This 4 − 6σ discrep-
ancy has intensified over the past decade as observa-
tional techniques have improved and systematic uncer-
tainties have been rigorously examined. Proposed res-
olutions span modifications to the standard cosmologi-
cal model, including early dark energy scenarios, evolv-
ing dark energy models, and interacting dark matter-
radiation frameworks, while other investigations focus on
potential systematics in distance ladder measurements or
CMB interpretation[3].

The similarity with the ΛCDM model is found in the
apparent equivalence between the Hubble horizon Rh(t0)
and the distance ct0, which is the distance light has trav-
eled since the Big Bang, representing the presumed cur-
rent age t0 of our universe. This equivalence was initially
noted as an anomaly of the standard model by Melia[4]
and has been subjected to increased scrutiny over the
past decade [5, 6], often referred to as the ”zero active
mass universe” or ”Rh = ct universe”.

The Rh = ct universe can be classified as an FLRW
cosmology, characterized by a comparable distribution of
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energy components within the cosmic fluid. However,
it advances further by adhering to the zero active mass
condition as stipulated by general relativity, thereby im-
posing the constraint on the total equation of state to
satisfy ρ + 3p = 0[5–7]. This stipulation seems neces-
sary for the consistent application of the FLRW metric.
According to the comparative analysis of the Rh = ct
and ΛCDM models as examined by Melia [8], it has been
observed that over 30 distinct data sets indicate a pref-
erence for the Rh = ct model, with a likelihood exceed-
ing 90%, compared to approximately 10% for the ΛCDM
model (refer to Table 2 in [8]). Although predictions
from the ΛCDM model frequently approximate those of
the Rh = ct model, as illustrated in Figure 1, this conver-
gence is confined to the far right side of the graph, partic-
ularly for values of t ≳ 1015s. This analysis is grounded
in the age-redshift relation within the ΛCDM framework,
utilizing the expression

tΛCDM(z) =
1

H0

∫ ∞

z

du√
Ωm(1 + u)3 +Ωr(1 + u)4 +ΩΛ

(1)
where, we keep in the basic assumption of a flat
universe(k = 0) and dark energy in the form of a cos-
mological constant, we have ΩA = 1 − Ωm − Ωr. The
corresponding expression for Rh = ct is

tRh(z) =
1

H0(1 + z)
(2)

As demonstrated in [9], the two trajectories derived from
Equation 1 for t ≳ 10−37s, along with a(t) ∝ eHinf t dur-
ing the inflationary phase for the ΛCDM model (where
Hinf signifies the constant Hubble parameter), and from
Equation 2 for Rh = ct, unveil several fascinating corre-
lations between these models. This comparison suggests
that the optimized ΛCDM cosmological distances and
expansion dynamics might simply replicate the charac-
teristics of the more fundamentally derived model with
ω = − 1

3 .
The plot illustrates that, although it is possible to

replicate Rh = ct with ΛCDM for z ≲ 8 by selecting
suitable parameter values, this method increasingly fails
as the expansion history is considered at earlier epochs.
Specifically, the Rh = ct model does not encounter tem-
perature or electroweak horizon issues[8, 10], whereas
ΛCDM necessitates inflation at t ∼ 10−37 seconds to ac-
count for the Universe’s current state[11].
Even so, the complicated history of acceleration and

deceleration applied to the standard model produces an
overall expansion today exactly equal to what it would
have been in Rh = ct anyway. This is the motivation of
the Rh = ct model,i.e., the coincidence that our universe
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today has an apparent horizon Rh exactly equal to ct.
These relationships result in an equivalent present-day
age of the Universe for both models (refer to fig.1), yet,
at z ≳ 6, where the expansion factor is approximately
1/7 (given a0 = 1), tRh is approximately double that of
t.

The article is structured as follows: Section II out-
lines the fundamental characteristics of the Rh = ct
universe, focusing on its derivation from the FRW
equations(Section IIA), the consequences drawn from
Birkhoff’s theorem(Section II B), and the characteriza-
tion of the cosmic horizon Rh(Section IID). Section III
gathers observational data in support of the model, in-
cluding luminosity distance assessments(Section IIIA),
high-redshift galaxy and quasar observations sourced
from the JWST(Section III B), and constraints on the
dark energy equation of state (ωde) along with matter
density (Ωm)(Section III C). Section IV provides a criti-
cal analysis of ongoing challenges, such as the conflict be-
tween matter composition and the model’s linear expan-
sion dynamics, the timeline for the formation of super-
massive black holes(Section IVA), and the inconsisten-
cies with observed cosmic acceleration(Section IVB). In
Section V, these discussions are synthesized, evaluating
the explanatory potential of the Rh = ct model in light
of its theoretical and observational constraints, while po-
sitioning it as a possible alternative to the ΛCDM model.

II. MAIN PROPERTIES

A. The FRW Equations

The foundation of standard cosmology lies in the FRW
metric, which describes a spatially homogeneous and
isotropic three-dimensional space, wherein the coordi-
nates either expand or contract depending on the time
variable:

ds2 = c2 dt2−a2(t)
[
dr2

(
1− kr2

)−1
+ r2

(
dθ2 + sin2 θ dϕ2

)]
(3)

In this metric, the coordinates are selected such that t de-
notes the time perceived by a comoving observer, main-
taining uniformity across the system as a ’community’
time. The symbol a(t) signifies the expansion factor,
while r is the scaled radial coordinate suited for the co-
moving frame. The geometric constant k is defined as
+1 for a closed universe, 0 for a flat universe, and 1 for
an open universe.

Utilizing the FRW metric in conjunction with Ein-
stein’s field equation results in the derivation of the Fried-
mann equation,

H2 ≡
(
ȧ

a

)2

=
8πG

3c2
ρ− kc2

a2
, (4)

FIG. 1. The evolution of the Universe’s expansion within
the Planck-framework is represented by the solid black curve,
while the corresponding rate for the Rh = ct universe is de-
picted by the red line. Despite the fact that the Rh = ctmodel
avoids horizon issues and eliminates the need for the specula-
tive inflationary paradigm, the standard cosmological model
struggles to adequately explain the current state of the Uni-
verse without invoking a rapid de Sitter-like expansion phase
at approximately t ∼ 10−37s. Despite experiencing various
periods of deceleration and acceleration, the net expansion
of the ΛCDM universe throughout a Hubble time ultimately
mirrors what it would have been after a more than 60 magni-
tudes of continuous expansion in Rh = ct. That this equality
occurs precisely at the present moment, when we are observ-
ing it, is an exceedingly improbable event, representing one of
the most significant coincidences in conventional cosmology.
Ref to fig 1 in [12].

and the ”acceleration” equation,

ä

a
= −4πG

3c2
(ρ+ 3p). (5)

The overdot symbol signifies a derivative with respect to
cosmic time t, while ρ and p denote the total energy and
total pressure, respectively. By further employing the
FRW metric in conjunction with the energy conservation
equation in general relativity, the resulting final equation
can be derived.

ρ̇ = −3H(ρ+ p), (6)

which is dependent with Equation 4 and 5.

B. The Birkhoff Theorem and its Corollary

According to the Birkhoff Theorem, within a space-
time exhibiting spherical symmetry, the sole solution to
the Einstein equations under vacuum conditions is the
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Schwarzschild exterior solution. Additionally, any vac-
uum solution with spherical symmetry in the exterior re-
gion must inherently be static. Birkhoff aimed to demon-
strate that, analogous to Newtonian theory, the external
gravitational field of a spherically symmetric matter dis-
tribution in General Relativity remains unaffected by ra-
dial pulsations occurring internally.

The aforementioned result extends a classic conclu-
sion from Newtonian physics, which is similarly appli-
cable in electrodynamics, stating that the gravitational
influence within a spherical shell is nullified. According
to Birkhoff’s theorem, the implication is that the metric
within a void spherical cavity, positioned at the center
of a spherically symmetric framework, should match the
flat-space Minkowski metric. Space will be flat within
a spherical cavity irrespective of the infinity of the sys-
tem. The nature of the materials surrounding the cavity
is irrelevant, provided the medium maintains spherical
symmetry.

Assuming a spherically symmetric mass is positioned
at the center of the cavity, Birkhoff’s theorem and its
corollary stipulate that the metric spanning the region
between this mass and the cavity’s boundary inherently
assumes the Schwarzschild form

ds2 =c2 dT 2
[
1− 2GM/c2R

]
− dR2

[
1− 2GM/c2R

]−1

−R2
(
dθ2 + sin2 θ dϕ2

)
.

(7)
This is the Schwarzschild’s (vacuum) solution describing
the spacetime around an enclosed, spherically symmetric
object of mass M . Consequently, worldlines associated
with an observer within this area experience curvature
relative to the cavity’s center, dictated exclusively by the
mass situated at the center. This scenario may seemingly
conflict with our isotropy assumption, which might be
simplistically interpreted as suggesting that the space-
time curvature within the medium should negate itself,
given that the observer perceives mass energy uniformly
distributed in every direction. However, the worldlines of
the observer are indeed curved in all directions, as stated
by the corollary to Birkhoff’s theorem; it indicates that
only the mass energy located between any two specific
points in this medium influences the trajectory connect-
ing those points.

Thus, the space-time curvature along a worldline con-
necting any point in the universe to an observer located
at a distance R can be ascertained by evaluating the
mass-energy contained within a sphere of radius R cen-
tered at the origin, which is the observer’s position. The
mass-energy existing beyond this volume exerts no net
influence on observations conducted within the sphere.
Building upon this idea, a novel coordinate system is re-
quired to directly derive this effect from the transformed
metric as presented in Equation 3. It has been demon-
strated that our observational boundary distinctly aligns
with the distance beyond which the curvature of space-
time obstructs any signal from reaching us.

C. General Coordinate Transformation

For educational clarity, it could be beneficial at this
juncture to draw an analogy between our two coordinate
systems and those typically employed in the context of
a gravitationally collapsed entity. The comoving coordi-
nates—or cosmic time—serve roles akin to those of an
observer in freefall under the object’s gravitational influ-
ence, while our new coordinates align with those of an
accelerated frame, similar to an observer stationed at a
static spatial point within the surrounding spacetime. A
key distinction lies in the fact that the newly introduced
coordinates (cT,R, θ, ϕ) are reliant on the observer, and
therefore are not universally applicable nor necessarily
required to be. In the framework of comoving coordi-
nates, the proper distance R(t) is determined while keep-
ing time t fixed. As indicated by Equation 3, for radial
paths in a flat cosmological model, we have R(t) = a(t)r.
It is occasionally advantageous to re-express Equation 3
in terms of R(t), as this may demonstrate how the metric
coefficients are influenced by the observer’s gravitational
horizon, a concept that we will subsequently define.
It is convenient to define the a(t) in Equation 3 using

a new function f(t) ref from [6]

a(t) = ef(t) (8)

In that case,

ds2 = c2dt2 − e2f(t)
[
dr2 + r2dΩ2

]
, (9)

where

dΩ2 ≡ dθ2 + sin2 θdϕ2. (10)

So

r = Re−f , (11)

and therefore

dr = e−f [dR−Rḟdt], (12)

so that

dr2 = e−2f

dR2 +

(
Rḟ

c

)2

c2dt2 − 2

(
Rḟ

c

)
cdtdR

 .

(13)
Collecting terms ans completing the square, we can now
write the metirc as

ds2 = Φ

[
cdt+

(
R

Rh

)
Φ−1dR

]2
− Φ−1dR2 −R2dΩ2.

(14)
Where, we define the quantities

Φ ≡ 1−
(

R

Rh

)2

, Rh ≡ c/ḟ , (15)

The Rh is the radiu of the cosmic horizon for the observer
at the origin .
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D. The Cosmic Horizon

In comparison to the Schwarzschild factor [1 −
2GM/c2R] in Equation 7, this transitions to [1 −
(R/Rh)

2] in eqaution 14. At a specified interval s, the
observer-dependent time T markedly diverges as R ap-
proaches Rh. This represents the critical distance at
which the spacetime curvature precludes any signal from
reaching us; the parameter R0 is the sole (classical) scale
within the system. Therefore, it is logically consistent,
given the corollary to Birkhoff’s theorem, that this pa-
rameter is characterized as a Schwarzschild radius or
gravitational radius:

Rh =
2GM(Rh)

c2
, (16)

Rh is the distance at which the enclosed mass is sufficient
to turn it into the Schwarzschild radius for an observer
at the origin of the coordinates. Where, M(Rh) defined
as

M(Rh) = Vprop
ρ(t)

c2
=

4π

3
R3

h

ρ(t)

c2
. (17)

The FRW equations theoretically permit a multitude of
solutions, each characterized by its unique form of the
expansion factor a(t). However, upon applying the con-
straint detailed in Equation 16, it becomes evident that
only a singular solution is permissible as dictated by
Equation 4:

H2 =
8πG

3c2
ρ− kc2

a2

=
8πG

3c2
3c4

8πGR2
h

− kc2

a2

=
c2

R2
h

,

(18)

where we have here assumed a flat universe with k = 0,
as indicated by the precision measurements of the CMB
radiation [13]. Thus we have

Rh = ct. (19)

For all cosmic times t, not just the current value t0. In
this situation, from Equation 5, we infer that the accel-
eration ä = 0 either for an empty universe (in which
= p = 0) or one characterized by an equation of state
ω = −1/3.

In this situation, the necessity of inflation to address
the horizon problem, which is prevalent in the ΛCDM
model, is effectively eliminated. The horizon problem
arises from the observed uniformity of the Cosmic Mi-
crowave Background (CMB), where regions on opposite
sides of the sky seem to have been causally disconnected
due to the finite speed of light. The standard ΛCDM
model requires inflation to explain how these regions
could have come into thermal equilibrium[11]. However,

the Rh = ct model, as demonstrated by Melia [10], does
not have this issue.
In the Rh = ct framework, the universe expands in

such a way that regions that would otherwise be outside
each other’s causal horizon remain connected throughout
the expansion process. This eliminates the need for an
inflationary period that was originally proposed to solve
this problem. In contrast to ΛCDM, where inflation is
a key component to reconcile the observed uniformity of
the universe, the Rh = ct universe naturally accommo-
dates the causally connected regions without requiring
inflation.
For example, the analysis of photon geodesics and

proper distances in the Rh = ct reveals that even regions
on opposite sides of the universe, which in ΛCDM would
be causally disconnected, have remained in contact since
the early universe[10]. This is a direct consequence of
the different expansion dynamics between the two mod-
els, where the Rh = ct universe does not require the rapid
expansion seen in inflationary models.

III. EVIDENCES SUPPORTED

A. The luminosity distance

High-redshift objects can serve as tools for testing the
ΛCDM and Rh = ct cosmological models. As can be seen
from [14], there exists the formula

DΛCDM
L =

c

H0

(1 + z)√
|Ωk|

sinn{|Ωk|
1
2 ×∫ z

0

1√
Ωm(1 + z)3 +Ωk(1 + z)2 +Ωde(1 + z)3(1+ωde)

dz}
(20)

DRh=ct
L =

c

H0
(1 + z) ln (1 + z) (21)

The former represents the luminosity distance in the
ΛCDM model, while the latter represents the luminosity
distance in the Rh = ct model. The luminosity distances
in the two models will exhibit significant differences at
high redshifts.
Select HII galaxies (HIIGx) and Giant Extragalactic

HII Regions (GEHR) as standard candles, which can be
observed at high redshifts. By observing data, the true
distance modulus is obtained from

µobs = 2.5[κ+ α log σ(Hβ) + logF (Hβ)]− 100.2 (22)

and the theoretical luminosity distance is calculated us-
ing the model, from which the theoretical distance mod-
ulus is obtained through

µth = 5 log [
DL(z)

Mpc
] + 25 (23)
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The cosmological constant for different models is deter-
mined using the maximum likelihood method

L =
∏
i

1√
2πσµobs,i

× exp [− (µobs,i − µth(z))
2

2σ2
µobs,i

] (24)

The obtained data is shown in Table I.

Model α δ Ωm Ωde

Rh = ct 4.86+0.08
−0.07 32.38+0.29

−0.29 - -

ΛCDM 4.89+0.09
−0.09 32.49+0.35

−0.35 0.40+0.09
−0.09 1.0− Ωm

ωCDM 4.87+0.10
−0.09 32.40+0.36

−0.36 0.22+0.16
−0.14 1.0− Ωm

Model ωde −2 lnL AIC KIC BIC

Rh = ct - 559.98 563.98 565.98 570.08

ΛCDM -1 (fixed) 563.77 569.77 572.77 578.92

ωCDM −0.51+0.15
−0.25 561.12 569.12 573.12 581.32

TABLE I. Best-fitting results in different cosmological models.
Ref to Table 2 in [14].

Several model selection tools commonly used to dif-
ferentiate between cosmological models [15]include the
Akaike Information Criterion,AIC = −2 lnL+2n,wheren
is the number of free parameters[16–19],the Kullback
Information Criterion,KIC = −2 lnL + 3n[20],and
the Bayes Information Criterion,BIC = −2 lnL +
(lnN)n,where N is the number of data points[21]. In the
case of AIC, with AICα characterizing model Mα, the
unnormalized confidence that this model is true is the
Akaike weight exp(−AICα/2). Model Mα has likelihood

P (Mα) =
exp(−AICα/2)

exp(−AIC1/2) + exp(−AIC2/2)
(25)

of being the correct choice in this one-on-one comparison.
All three statistical methods indicate that Rh = ct is

preferred over both the ΛCDM and ωCDM models, with
the likelihood for the former exceeding 90% in all cases

B. JWST Observations

Over the past two years, the collected high-precision
data from three different sources, as we will state in this
section below, these findings consistently indicate that
the timeline predicted by the standard ΛCDM model is
significantly contradicted by the observations.

The early emergence of (i) well-formed galaxies[22]
and (ii) 109M⊙ supermassive black holes[23] has been
widely discussed. Evidence from high-redshift galaxies
(z ∼ 16) and quasars (z ∼ 10) strongly supports the
timeline in the Rh = ct universe, whereas the latest find-
ings reported by JWST further challenge the timeline
within the ΛCDM framework. Conversely, (iii) Witstok
et al.[24] identified compelling evidence of the ultraviolet

attenuation ’bump,’ associated with PAHs, i.e., nano-
sized graphitic grains[25], in the spectrum of a galaxy at
z = 6.71. Basic astrophysical principles would require a
much longer time for these carbonaceous dust grains to
form than the age of the ΛCDM universe at that red-
shift (see figure 2 left). In contrast, all three of these
categories of source self-consistently follow the timeline
predicted by the Rh = ct universe (figure 2 right).

1. Early Galaxies

JWST has identified a large population of high-z galax-
ies, including candidates at z ∼ 16 − 17, within a short
period after its deployment [26–28]. Spectroscopic con-
firmations have verified photometric redshifts up to at
least z ∼ 13 [29]. However, these findings challenge the
expected timeline of galaxy formation in ΛCDM.
Based on Planck-optimized parameters (H0 = 67.4 ±

0.5 km s−1 Mpc−1, Ωm = 0.315±0.007), ΛCDM predicts
that significant galaxy formation should not have com-
menced until several hundred Myr after the Big Bang
[30]. The detection of well-formed stellar structures with
masses of ∼ 109M⊙ at z ∼ 16 − 17 implies that these
galaxies must have assembled within ∼ 230 Myr after
the Big Bang [22]. However, numerical simulations indi-
cate that the condensation of baryonic gas and formation
of Population III (Pop III) stars within dark matter halos
of Mhalo ∼ 106M⊙ could not have occurred significantly
earlier than z ∼ 20, as radiative cooling and feedback
processes would have imposed substantial delays [31, 32].

The major inconsistency lies in the rapid formation of
massive galaxies within ∼ 70 − 90 Myr, which no sim-
ulation has yet been able to replicate [33]. Even intro-
ducing increased scatter in cooling times and weaker Pop
III supernovae [34, 35] does not sufficiently alleviate the
tension. If the inferred growth rate of galaxies such as
S5-z17-1 is modeled as [33]:

dM

dt
= K exp

(
t− t∗

tc

)
, (26)

where tc is the characteristic timescale for star forma-
tion, then the results imply an implausibly early onset
of star formation (z ∼ 28) in ΛCDM [22]. In contrast,
the Rh = ct cosmology offers a more extended timeline,
allowing ample time for these galaxies to form within an
astrophysically reasonable framework [22].

2. The Challenge of Early Supermassive Black Holes

The discovery of the supermassive black hole (SMBH)
UHZ-1 at z = 10.073 [36] exacerbates the timeline in-
consistency in ΛCDM. The standard model predicts that
black hole growth is constrained by Eddington-limited
accretion, described by:

dM

dt
=

1.3× 1038erg/s

ϵc2M⊙
M. (27)
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For a seed black hole of Mseed ∼ 10M⊙, the Salpeter
timescale suggests that reaching M ∼ 108M⊙ would re-
quire at least ∼ 600 Myr, yet ΛCDM allows only ∼ 300
Myr before z = 10, making standard growth mechanisms
insufficient.

Proposed solutions include super-Eddington accretion
and direct collapse black hole (DCBH) formation, but
observational evidence remains lacking. For example, no
known high-z quasar has been confirmed to be accreting
significantly above the Eddington limit [37]. Addition-
ally, while the DCBH scenario proposes massive 105M⊙
seeds, no direct evidence of such an early formation chan-
nel has been identified.

In contrast, the Rh = ct model provides a longer cos-
mic timeline, wherein UHZ-1 would have emerged at
z ∼ 20, allowing ∼ 600 Myr for its growth—a scenario
that aligns with current astrophysical models of Pop III
star evolution and SMBH seeding mechanisms [22].

3. Unexpected PAH Detection in the Early Universe

JWST observations of the galaxy JADES-GS-z6-0 at
z = 6.71 (∼ 900 Myr in ΛCDM) revealed strong evidence
for an absorption feature at λemit = 2175 Å, attributed
to polycyclic aromatic hydrocarbons (PAHs) [24]. PAHs
are expected to form primarily through asymptotic giant
branch (AGB) stars, which require at least ∼ 1 Gyr to
evolve [38], creating a significant time compression prob-
lem.

Conventional ΛCDM models predict that at z = 6.71,
the first stars were only ∼ 500 Myr old, making it un-
likely for AGB stars to have contributed significant dust
production. While alternative scenarios such as PAH for-
mation in massive Wolf-Rayet (WR) stars or supernova
ejecta have been proposed [39], these mechanisms are
highly speculative, as WR stars are rare and supernovae
typically destroy more dust than they create [40].

In contrast, in the Rh = ct model, the detection of
PAHs at z = 6.71 corresponds to ∼ 1.7 Gyr after the Big
Bang, providing sufficient time for AGB stars to produce
the required dust. This alleviates the time compression
issue seen in ΛCDM, offering a more consistent timeline
for the emergence of early dust [22].

C. ωde-Ωm constraint

Over the past decade, ωde and Ωm have been measured
with high precision. But we can only gain the value range
of these two parameters, not their unique values. The
reason for this is that, other than the Sachs-Wolfe effect,
which is responsible for the largest angular fluctuations
in the CMB, none of the other mechanisms producing
structure of one kind or another depends sensitively on
the expansion history of the Universe. As such, some
degeneracy exists among the possible choices of cosmo-
logical parameters pertaining to the CMB.[41]

Nonetheless, all of the constraints derived from the
observations produce a similar region in ωde-Ωm phase
space The confidence regions shown in Figure 3 are
adapted from a corresponding figure in Melchiorri et al.
(2003)[44]. These show the 68%, 95%, and 99% confi-
dence regions corresponding to the Type Ia SNe obser-
vations (adapted from Suzuki et al. 2012, shown as gray
swaths), and the corresponding regions inferred from the
analysis of CMB, HST, and 2dF data (indicated by the
lighter colored island regions to the upper left of this
diagram).[41]
The most important part of Figure 3 is the thick black

curve. Now we derive this curve. We assume that k = 0
as in Equation 18. This also means that Ω ≡ Ωr +Ωm +
Ωde = 1. Then, we integrate the Equation 18, and we
have

ct0 = Rh(t0)

∫ 1

0

udu√
Ωr +Ωmu+Ωdeu1−3ωde

(28)

To obtain Equation 28, we have allowed the possibility
that dark energy is not a cosmological constant (i.e., that
ωde may be not 1, in which case we would refer to this
model as wCDM, rather than ΛCDM), and we have used
the derived value of the gravitational horizon to write
Rh = c

H (Melia 2007[5]; Melia Shevchuk 2012[7]). This
equation also assumes that a → 0 at t = 0.
As we have obtained the Equation 19, Equation 28 can

be written as

I =

∫ 1

0

udu√
Ωr +Ωmu+Ωdeu1−3ωde

(29)

for any given ωde, there is only one value of Ωm that
satisfy the equation. This is the expression of the curve
in the Figure 3. It illustrates what values of ωde and Ωm

are permitted in the Rh = ct universe.
ΛCDM can’t explain why the most possible region of

the allowed values is limited as in the Figure 3 and why
these two observations have the overlapping area in the
figure. But for the Rh = ct universe, it is the region
that allowed by the Equation 29. What’s more, the
WMAP measurements (Bennett et al. 2013[42]), which
is the black dot, and the Planck measurements (Ade et
al. 2013[43]), which is the black star just located beside
the curve closely. The theory of Rh = ct universe gives a
good prediction.

IV. ARGUMENTS

A. The influence of matter

1. The cosmic evolution curve

Consider a universe with two energy density compo-
nents: matter with a zero equation of state and dark
energy with an equation of state parameter ω, while ne-
glecting the impact of photon energy density. According
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FIG. 2. Left: age-redshift relation in the Planck-ΛCDM framework (solid blue curve). In this model, the ”dark ages” end
following the formation of Population III stars at z ∼ 20 (t ∼ 200 Myr). Observations suggest the Epoch of Reionization (EoR)
began at z ∼ 15 (t ∼ 280 Myr) and ended at z ∼ 6 (t ∼ 1 Gyr). Under conventional astrophysical assumptions, the earliest
quasar (UHZ-1) would require a formation onset before the Big Bang (t < 0), and the first galaxies (e.g. S5-z17-1) would need
foundational processes preceding star formation. Moreover, PAHs detected at z = 6.71 (t ∼ 900 Myr) are expected to take
approximately 1 Gyr to form, implying an onset before the Big Bang and well before Population III stars. Right: Same as
left, but for the Rh = ct model (solid red curve). Here, the ”dark ages” end at z ∼ 50 (t ∼ 250 Myr), the EoR begins at t ∼ 820
Myr (z ∼ 15) and ends at t ∼ 1.9 Gyr (z ∼ 6). PAHs appear at ∼ 1.7 Gyr (z = 6.71), forming since z ∼ 17 (t ∼ 730 Myr).
UHZ-1 was seeded at z ∼ 20 (t ∼ 620 Myr) and is observed at t ∼ 1.2 Gyr (z = 10.1); the galaxy S5-z17-1 began its growth at
t ∼ 500 Myr (z ∼ 25) and is observed at ∼ 750 Myr (z ∼ 16). Ref to figure 2 and figure 3 in [12].
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FIG. 3. The solid black curve indicates the value ωde and Ωm

must have in the Rh = ct universe. The location (black dot)
of the WMAP measurements (Bennett et al.2013[42]), versus
(star) the latest measurements by Planck (Ade et al. 2013
[43]), which resulted in the values Ωm ≈ 0.3 and ωde ≈ −1.13.
The value Ωm = 0.27 is realized only when ωde = −1

.

FIG. 4. The cosmic horizon, Rh, as a function of cosmic time
for various cosmological models. The dark blue line represents
massless universe, containing only a dark energy component
with ω = − 1

3
, while the green and red lines represent similar

cosmological models but with present-day normalized mass
densities of 0.05 and 0.27, respectively. The cyan line corre-
sponds to a ΛCDM universe with ω = −1. Ref to figure 1 in
[45]

to [45], the cosmic evolution under different matter den-
sities can be obtained from

H ≡ ȧ

a
= H0

√
Ωma−3 +Ωdea−3(1+ω) (30)

as shown in Figure 4, Figure 5
In Figure 4,the blue curve represents the Rh = ct

model with a matter density of 0, where the evolution of

FIG. 5. As Figure 4, but presenting the redshift, as observed
today, as a function of cosmic time. Ref to figure 2 in [45].

the cosmic horizon is linear. The green curve introduces
a slight amount of matter with a density of 0.05, showing
that the evolution of the cosmic horizon is still approxi-
mately linear. Although it aligns with the Rh = ct model
in the present, it diverges significantly from the Rh = ct
evolution curve in the early universe. The red curve,
which includes the current matter density of 0.27, shows
an even greater deviation. The cyan curve represents the
ΛCDM model, with a current matter density of 0.27.
In Figure 5, it can also be observed that as the mat-

ter content increases, the evolution curve of the cosmic
horizon increasingly deviates from the Rh = ct evolution
pattern.
From the observation of Figure 4, one can immediately

draw the conclusion: if the equation of state for the dark
energy component of the universe satisfies ω = − 1

3 , then
the presence of any matter will cause the universe to
deviate from the strictly required Rh = ct cosmological
evolution.

2. Look-back time verses redshift

The advantage of theRh = ctmodel is that it addresses
the problem of high-redshift quasars and the growth of
supermassive black holes within a finite time after the
Big Bang, which the ΛCDM model cannot[46].
If we assume that supermassive black holes did not ex-

ist originally but instead grew from black holes formed
by the first generation of stars, then there exists a rela-
tionship [46]

M = M0 exp (
τM0

45Myrs
) (31)

Therefore, based on black hole mass estimates and ob-
servation time, we can retroactively infer the time of for-
mation of the black hole seed. A set of data from Table
in [46] is used as a sample. As shown in Figure 6, the
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FIG. 6. The figure uses 5M⊙ and 20M⊙ seed black holes.The
Big Bang is represented by a vertical solid black line, while
the end of the Dark Ages is marked by a dashed line. A
red horizontal bar indicates the period of seed black hole for-
mation as described. The bottom left panel illustrates the
case of Ωm = 0.27 and ω = −1, corresponding to the ΛCDM
cosmological model, while the bottom right panel shows the
scenario with Ωm = 0.00 and ω = − 1

3
, corresponding to

the Rh = ct cosmological model. The top panels display
cosmological models incorporating a dark energy component
ω = − 1

3
but with different matter density parameters: the

top left panel features Ωm = 0.27, and the top right panel
features Ωm = 0.05. Ref to figure 3 in [45].

red band corresponds to the period during which seed
black holes with masses between 20M and 5M must have
formed in order to produce the quasars we observe today
(this is equivalent to Figure 1 in [46]).

In the ΛCDM model, seed black holes need to form
during the ”dark ages,” which occurs before supernova
explosions. In the Rh = ct model, the seed formation
time for quasars occurs at a later stage of the universe,
most of which happens after the ”dark ages,” during the
reionization era, when massive stars can easily form seed
black holes. However, the presence of matter reduces this
advantage. At a matter density of 0.05, the formation
period is delayed to just after the dark ages. At a more
realistic matter density of 0.27, the formation period of
black hole seeds is now pushed back into the depths of the
”dark ages,” and some seed black holes may even need
to have formed during or before the ”big bang” period.

The presence of matter significantly weakens the
claimed advantage of the Rh = ct model in providing
sufficient time for the formation of supermassive black
holes in the early universe.

3. Evolving dark energy?

If dark energy can deviate, does the Rh = ctmodel still
have a chance? If ω is less than 0, the universe becomes

FIG. 7. The evolving equation of state,ω, as a function
of cosmic time, required to ensure that Rh = ct. With the
presence of any non-zero matter component, ω becomes un-
physical at suficiently early times. Ref to figure 5 in [45].

matter-dominated in the early universe. If ω is greater
than 0, the universe becomes energy-dominated in the
early universe, which increases the degree of deviation in
the evolution curve of the cosmic horizon. Therefore, an
attempt is made to find a time-varying ω to achieve the
required expansion.
For the Rh = ct model, there exists

a
√
Ωma−3 +Ωdea−3(1+ω) = 1 (32)

which can be rearranged to express ω as a function of
cosmic time t.

ω = −1

3
(1 + log

1− Ωm/(H0t)

Ωde
/ logH0t) (33)

it is required that

H0t ≥ Ωm (34)

Figure 7 presents this evolution for several ducial cos-
mologies. As expected, with no matter content (Ωm = 0),
the equation of state of the dark energy is constant
at ω = − 1

3 . However, in the other two cases, with
Ωm = 0.05 (green line) and Ωm = 0.27 (red line), then ω
significantly deviates from this value. And both models
cross the ’Phantom Divide’ (ω = −1), before diverging
to ω = −∞
Hence,considering Equation 34, for any universe with

matter, there is no equation of state for dark energy that
ensures the existence of Rh = ct.

B. The evidence of accelerated expansion

We start from null hypothesis, one is called no acceler-
ation, which is Equation 35; another is called no super-
acceleration, which is Equation 36.

q(t) ≡ − ä

aH2
≥ 0 (35)
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Ḣ − k

a2
≤ 0 (36)

Rh=ct universe is when q = 0. The universe expands
at a constant rate all the time[37].

For the convenience of using the null hypothesis, we
derive two new equations from the null hypothesis[37].

The deceleration parameter q(t) can be related with
the Hubble parameter H(t) as

ln
H(z)

H0
=

∫ z

0

1 + q(z′)

1 + z′
dz′ (37)

Substituting Equation 35 into Equation 37, we have

H(z) ≥ H0(1 + z) (38)

Hubble constantH0 denotes the current value of the Hub-
ble parameter H(z).
for Equation 36. Integrating directly, we have

H(z) ≥ H0

√
1− Ωk +Ωk(1 + z)2 (39)

where Ωk = − k
a0H2

0
. For a spatially flat universe, Ωk = 0,

the above equation becomes

H(z) ≥ H0 (40)

Now we have the following new No Acceleration condi-
tion (Equation 41) and No Super-acceleration condition
(Equation 42)

E(z) ≥ (1 + z) (41)

E(z) ≥ 1 (42)

where E(z) = H(z)
H0

.
If the universe has never experienced an accelerated

expansion or the expansion is always decelerating, then
Equation 41 is always satisfied. Therefore, this equation
can be used to obtain direct model-independent evidence
for cosmic acceleration.

However, we must be cautious to interpret the result
correctly. Because of the integration effect, even if the
Equation 41 is satisfied at some redshifts, it does not
mean that the universe has never experienced an accel-
erating expansion[47],[48]. If the Equation 41 is violated
at some redshifts, we are sure that the universe once ex-
perienced accelerating expansion. Now we use the Pan-
theon+MCT Sne Ia measurements on E(z) to show the
evidence of cosmic acceleration expansion. The advan-
tage of the E(z) data[49] is that it is independent of
the Hubble constant and the drawback is that it assume
k = 0, so it is model dependent in this sense.
We plot the measurements E(z) data at six redshifts

with 1σ, 2σ, 3σ errors and 1 + z, 1 on the Figure 8. We
can see that all the low redshift data points are at out
of the deceleration region even at 3σ level. As a result,
the universe has experienced accelerated expansion. The
Pantheon+MCT Sne Ia data is strongly against the Rh =
ct universe.

FIG. 8. The Pantheon+MCT SNe Ia measurements on E(z)
with 1σ, 2σ, 3σ errors. The dashed line corresponds to
the Rh = ct model with q(z) = 0, the dotted line denotes

E(z) = 1 which represents the model with Ḣ = 0 in a spa-
tially at universe, and the solid line shows the best fit ΛCDM
model.[37]

V. SUMMARY AND DISCUSSION

In this review, we started with the coincidence that
now the deceleration of the Hubble–Lemaitre flow is com-
pensated by the acceleration of the dark energy; the aver-
age acceleration throughout the history of the universe is
almost null and the size of the universe is such as if there
were constant expansion[5], and introduce the derivation
and main properties of Rh = ct universe supported by
this coincidence. Due to the evidence backing it, this
hypothesis provides additional advantages at high z. In
this context, the standard model struggles to account
for the presence of objects that typically require exten-
sive time to form, in the youthful universe that does
not permit sufficient time for such evolution. Rh = ct
solves the problem because the age of the universe at red-
shift z, t(z), is much greater in this model than with the
standard ΛCDM. The Big Bang would have happened
H−1

0 = 14.57 Gyr ago (for H0 = 67.4 km/s/Mpc), longer
than the 13.79 Gyr for ΛCDM with the same Hubble
constant[12]. There would have been no inflation.

Nevertheless, theoretical derivation presents certain
uncertainties [50], particularly regarding the applicability
of the Schwarzschild radius on such extensive scales. A
fundamental presumption in deriving the Schwarzschild
radius is that the space-time is static. This assumption
may not hold when considering expanding regions. Ad-
ditionally, it is important to highlight that a particu-
lar spacetime geometry can be represented through var-
ious coordinate systems, and not every characteristic of
the metric inherently holds physical significance. A no-
table illustration of this is the divergence observed at the
event horizon in the Schwarzschild metric, which, when
expressed in Eddington-Finkelstein coordinates, can be
demonstrated to be a coordinate singularity.[51]. A no-
tably distinct aspect of this model when compared to the
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standard model is its assertion that the CMB originates
at z ≈ 16 through the rethermalization of Population III
starlight by dust [52]. However, a significant challenge
lies in explaining how a perfect blackbody spectrum could
arise, given that no known type of dust generates such a
spectral form. This alternative explanation of the CMB
significantly diverges from the standard model. More-
over, achieving a state in which the Universe’s contents
are fine-tuned to consistently result in an overall effec-
tive EOS of 1/3 is exceedingly challenging.In this case,
the parameter ω = −1/3 may not represent a constant
value, but rather reflects the average characteristic of our
universe, denoted as < ω >= −1/3. An additional issue
concerns the fact that the amplification of fluctuations
within the Ht = 1 model is influenced by a negative
pressure term, which appears consistent regardless of the
scale of perturbation. Consequently, the manner in which
large-scale structures manifest within this framework re-
mains somewhat ambiguous.

In the observed evidences against the Rh = ct uni-
verse, the presence of matter is demonstrated to compro-
mise the strict expansion characteristics fundamental to
the evolution of Rh = ct cosmologies as presented. Eval-
uating whether a dynamic dark energy component can
reconcile this type of cosmological expansion with mat-
ter by achieving an expansion aligned with an average
value of < ω >= −1/3, it is observed that including mass
necessitates non-physical characteristics of the dark en-
ergy component in the early universe. This suggests that
matter in the universe imposes substantial constraints
on the essential attributes of Rh = ct cosmology, indicat-

ing that an unconventional and unphysical evolution of
the matter component would be necessary to preserve its
viability. Apart from that, the evidence of cosmic accel-
eration strongly against the Rh = ct universe. Despite
certain predictions and implications of ΛCDM being so
perplexing that alternative mechanisms have been devel-
oped to replicate the observed characteristics of accel-
erated expansion, substantial observational evidence, as
previously mentioned, supports the presence of a cosmo-
logical constant.
Thus, although it may appear surprising that the aver-

age deceleration parameter is approximately zero at this
specific moment in cosmic time, indicating that certain
elements of the standard model might be artificially con-
structed, such arguments cannot take precedence over
the constraints derived from observational data. The
close equivalence between the Hubble radius Rh and the
universe’s age t0 necessitates a careful interpretation and
does not automatically rule out a cosmological model fea-
turing a non-zero cosmological constant.
To conclude, while the model Rh = ct offers an intrigu-

ing alternative to the standard cosmological framework,
it faces substantial challenges. In contrast, the ΛCDM
model, despite its own unresolved issues, continues to
align well with current observational data and remains
the dominant framework. Further observational data, es-
pecially from large surveys and high-redshift probes, will
be crucial in testing the viability of the Rh = ct model
and determining whether it can provide an adequate ex-
planation for the universe’s observed acceleration, cosmic
structures, and the cosmic microwave background.
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