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Gravitational wave (GW) detection has achieved remarkable success, particularly in identifying
signals from compact binary mergers, including binary black hole (BBH) and binary neutron star
(BNS) systems. BNS mergers are of particular interest for multi-messenger astronomy due to their
potential to produce electromagnetic counterparts. Recent advancements in deep learning have
provided alternative approaches to traditional matched-filtering techniques, yet achieving sensitive
and robust detection of GW signals from both BBH and BNS mergers remains challenging. In this
study, we developed a deep learning framework that utilizes convolutional neural networks (CNNs)
and ResNet architectures to detect GW signals embedded in Gaussian noise. We trained our mod-
els using 5,000 signal-plus-noise samples and 5,000 pure noise samples, with optimal signal-to-noise
ratios (SNRs) of 20 for BBH and 30 for BNS signals. Receiver operating characteristic (ROC) and
sensitivity curves were employed to evaluate model performance, revealing that the CNN model
achieves high sensitivity for BBH signals but struggles with BNS detection due to dataset limi-
tations. Incorporating on-the-fly data augmentation significantly enhanced training efficiency and
robustness compared to traditional pre-computed augmentation methods, which, while more ro-
bust, required substantially greater computational resources. Model comparisons between CNN,
ResNet50,ResNet101 and ResNet151 show that ResNet-based architectures, especially ResNet101,
outperform CNNs in GW detection tasks, providing superior sensitivity at lower false-alarm prob-
abilities. However, this comes with higher computational complexity, underscoring the trade-off
between accuracy and efficiency. While our pipeline demonstrated competitive performance in de-
tecting BBH signals, further optimization is required for BNS detection.

I. INTRODUCTION

Gravitational waves (GW) from compact binary coa-
lescences (CBCs) are now routinely detected by ground-
based laser interferometers. The LIGO [1] and Virgo [2]
observatories have identified over 90 CBCs during their
first three observing runs [3–5]. Most of these events are
binary black hole (BBH) mergers, with only two con-
firmed binary neutron star (BNS) mergers [6, 7], and
two confirmed neutron star–black hole (NSBH) mergers
reported by the end of the third observing run (O3) of
the LIGO-Virgo-KAGRA collaboration. The first de-
tected BNS merger, GW170817, marked the beginning
of a new era of multi-messenger astronomy, with gravi-
tational waves serving as a crucial messenger [6, 8]. A
gamma-ray burst was serendipitously detected from this
merger [9], along with a kilonova and X-ray counterpart
identified through follow-up observations [8, 10]. These
observations enabled unique measurements of the Hub-
ble constant [11] and provided constraints on the neu-
tron star equation of state [12, 13]. Further observations
of BNS mergers could refine constraints on the Hubble
constant, address the Hubble tension, and potentially re-
veal links between BNS mergers and other transient sig-
nals, such as fast radio bursts. As interferometer sensi-
tivity improves and new instruments like KAGRA [14]
come online, the increasing likelihood of multi-messenger
detections highlights the need for developing new CBC
search pipelines.
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CBCs are currently detected using five primary search
pipelines [15–19], four of which employ matched filtering
to identify signals. These pipelines use a bank of sig-
nal templates with unique intrinsic parameters to cover
the mass-spin parameter space. The templates are cross-
correlated with incoming GW detector data to produce
signal-to-noise ratio (SNR) time series. In the absence
of noise, the highest SNR is achieved by the template
whose parameters closely match those of the true sig-
nal. Triggers are generated when an SNR threshold is
met (e.g., SNR > 4 in one detector). These triggers are
then clustered and assigned a significance using a ranking
statistic, which typically accounts for the peak SNR, co-
incident triggers between observing interferometers, and
signal consistency tests [20]. Triggers are further eval-
uated by assigning a false alarm rate (FAR) based on
background triggers, and those with sufficiently low FAR
are considered GW candidates.

Despite the success of current pipelines in detecting
CBCs, exploring new detection methods is worthwhile for
several reasons. Firstly, the overall search for CBCs ben-
efits from incorporating multiple pipelines with unique
search methods [21]. Unique methods can detect events
that might be missed by other pipelines, while joint de-
tections provide stronger evidence that an event is a
genuine CBC. Secondly, mitigating non-Gaussian tran-
sient noise artifacts (glitches) remains an ongoing chal-
lenge. Glitches can produce high-SNR triggers, and
pipelines must avoid generating alerts based on these
while still identifying true CBC signals [6]. As both
the detection rate of CBCs and the frequency of in-
strumental glitches have increased over time [4, 5], ad-
dressing glitches without excluding true signals is becom-
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ing increasingly important. A detection method capa-
ble of identifying signals while minimizing the impact of
glitches, and correctly interpreting signals contaminated
by glitches, would be ideal. Given these challenges, deep
learning-based detection methods are a logical avenue for
exploration [22].

Deep learning has already proven useful in enhancing
the accuracy and latency of various gravitational wave
data analysis tasks (e.g., [22–32]). For BBH detection,
deep learning has shown promise in achieving sensitiv-
ity comparable to matched filtering pipelines in real de-
tector noise [30–32]. However, applying deep learning
to lower-mass signals like BNS mergers introduces ad-
ditional challenges. BNS signals are present in detector
data for O(100 s) at current sensitivity, meaning their
signal power is significantly more spread out compared
to BBH mergers with equivalent SNR. Strain-based BNS
detection methods [33–37] must either truncate the in-
put window, losing signal power, or make approxima-
tions during pre-processing, which limits sensitivity. Sim-
ilarly, spectrogram-based detection methods [38, 39] face
analogous limitations. As a result, a deep learning ap-
proach for BNS detection that matches the sensitivity of
matched filtering pipelines has yet to be demonstrated.

In this work, we investigate the use of a neural network
(NN)-based search pipeline for detecting BNS and BBH
mergers in the SNR time series generated by matched
filtering. One advantage of detecting signals in the SNR
time series is that the CBC signal power is more con-
densed compared to the strain, which is particularly ben-
eficial for the longer-duration BNS mergers. Moreover,
SNR time series are readily available as data products
from matched filtering pipelines, making their online im-
plementation relatively straightforward. This work is fur-
ther motivated by [40] and [34] , where we demonstrated
that BBH detection using SNR time series achieved
promising sensitivity results, especially for lower-mass
BBH systems. Much of the context in Sec. I is de-
rived from that study and has been adapted here
just as part of course homework.

The structure of the remainder of this work is as fol-
lows. In Sec. II we cover how we implement matched
filtering, select our detector noise, and how we generate
our template bank and training datasets. In Sec. III we
cover the high-level architecture of our neural network
and its training and validation. The comparision we use
to run our search pipeline by different models,mergers
and methods and assign false alarm rates is presented
in Sec. IV. In Sec. V we summarise the findings of this
work, discuss their implications, and discuss potential fu-
ture improvements.

II. DATASET GENERATION

In this section, we introduce the concept of matched
filtering and discuss how we use matched filtering to gen-
erate our training and validation datasets. In Sec. II A we

define our implementation of matched filtering. Sec. II B
describes how we generate the BNS and BBH template
bank used in the rest of this work. In Sec. II C we cre-
ate our training and validation datasets for our neural
network.

A. Matched filtering

Matched filtering is a signal processing technique
widely used in gravitational wave research, as it pro-
vides the optimal method for detecting modeled signals in
stationary Gaussian noise [41]. This technique involves
cross-correlating a signal template s with incoming de-
tector data h, resulting in a signal-to-noise ratio (SNR)
time series ρ(t) [41, 42]:

ρ2(t) =
z(t)

⟨s|s⟩
, (1)

where ⟨s|s⟩ represents the noise-weighted inner product
of the template, and z(t) is the matched filter:

z(t) = 4

∫ fhigh

flow

s̃(f)h̃∗(f)

Sn(f)
e2πiftdf , (2)

Here, Sn(f) is the estimated one-sided power spectral
density (PSD) of the detector noise, and a tilde denotes
the Fourier transform of the template or data.
The SNR time series offers a significant advantage as

input to a deep learning model compared to detector
strain data. In gravitational wave strain data, a CBC
signal can span hundreds of seconds, depending on the
progenitor masses and the low-frequency sensitivity of
the interferometer. Matched filtering condenses this sig-
nal power into an SNR peak that is only tens of millisec-
onds wide, simplifying detection.
We implemented matched filtering using Python’s

NumPy module [43], enabling efficient batch computation
of SNR time series through array-wise operations. Our
implementation is adapted from the PyCBC library [44].

B. Template bank generation

We generated our template bank using the LIGO Al-
gorithm Library (LALSuite [45]). For BNS signals, we
employed the IMRPhenomPv2 NRTidalv2 waveform model
[46], simulating systems with component masses rang-
ing from 1 to 2.6 M⊙. These simulations include tidal
deformation contributions characterized by the tidal de-
formability parameter, Λ. Instead of relying on a specific
equation of state (EoS) for calculating Λ, we generalized
the M−Λ relationship following the approach in [47]. To
define a broad region in the M −Λ space, we used two fit
functions, g1(x) = a1 exp(b1x) and g2(x) = a2 exp(b2x),
as upper and lower bounds to several microphysical EoS
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FIG. 1. M − Λ curves of several EoSs taken from [48] are
shown as solid colored curves. The black dotted and dashed
curves labeled as g1(x) and g2(x), respectively, are chosen
functions to span a wide range in the M−Λ space. The M−Λ
data points enveloped in this region are used to simulate GW
signals of BNS mergers in the regression task.

models, as illustrated in Figure 1. For each primary mass,
m1, the corresponding tidal deformability, Λ1, was ran-
domly sampled from the range defined by the envelope
between the dotted (g1(x)) and dashed (g2(x)) lines in
Figure 1. Specifically, Λ1 is assigned a value between
g1(m1) and g2(m1), using fit parameters a1 = 6.45×105,
b1 = −4.386, a2 = 2.45 × 105, and b2 = −6.16. The
secondary mass, m2, was then assigned a tidal deforma-
bility, Λ2, from a uniform distribution within the range
(Λ1, g1(m2)]. This ensures Λ1 monotonically decreases
with mass in the region of interest. It is worth noting
that not all EoS models shown in Figure 1 necessarily
satisfy the Λ constraints derived from GW170817 [48].
However, this choice of envelope ensures that the M −Λ
range of relevance is enclosed by the parameters used in
our simulations.

For BBH signals, we used the IMRPhenomD waveform
model [49], which describes the inspiral-merger-ringdown
templates for systems with non-precessing spins. We sim-
ulated systems with component masses between 5 and
100 M⊙ and assumed zero spin. The BBH signals were
simulated with a duration of 1 second sampled at 8192
Hz, while the BNS signals were simulated with a dura-
tion of 10 seconds sampled at 4096 Hz. This distinction
accounts for the longer duration and higher frequencies
typically present in BNS signals and reduces memory re-
quirements during neural network training.

The input parameters for generating the template bank
are shown in Table I. We set the maximum z-aligned spin
magnitude Sz to 0.5, as it is unlikely neutron stars would
merge with a larger spin [50, 51].

Parameter BNS BBH

Minimum component mass (M⊙) 1 5

Maximum component mass (M⊙) 2.6 100

Maximum |Sz| 0.5 0

Lower frequency cutoff (Hz) 30 12

Approximant NRTidalv2 IMRPhenomD

Observation time (s) 1 10

Sampling rate (Hz) 4096 8192

SNR 30 20

TABLE I. Parameters used to create the template bank. All
mass units are in M⊙.

C. Training dataset construction

Regretfully, we just use stimulated Gaussian noise in-
stead of obtaining real LIGO data from the LIGO GW
Open Science Center (GWOSC). Both the data and the
simulated signals are whitened separately with power
spectral density (PSD) computed directly from the raw
GW strain data by Welch’s method. Whitening of data is
an operation of rescaling the noise contribution at each
frequency to have equal power . Because whitening is
a linear procedure, whitening both parts individually is
equivalent to whitening their sum. The waveforms are
subsequently shifted such that the peak amplitude of
each waveform is randomly positioned in the range from
the 60% to 80% part of the time series, to reassure ro-
bustness of the network against temporal translations.

Example time series are shown in Fig.2. The train-
ing sets for the detection consist of 10000 independent
time series with 1/2 containing BNS or BBH signal +
noise, and 1/2 noise only and the testing data sets con-
sist of 1000 samples. We use two data gernerations for
training, method 1 typically involves the traditional of-
fline approach, where all augmented data is pre-generated
and stored before training. However, this method is time-
consuming and requires significant storage space to save
the augmented dataset, making it unsuitable for large-
scale datasets or real-time applications. In contrast,
method 2: On-the-fly data augmentation dynamically
generates augmented data in real time during training.
This approach not only avoids the high computational
and storage costs of pre-computation but also allows for
randomized augmentation strategies in each training cy-
cle, providing a diverse set of input samples and signifi-
cantly improving the model’s generalization ability. We
found that by starting neural network training at high
SNR (¿ 50) and then gradually increasing the noise in
each subsequent training session until the final SNR is in
the range between 3 and 20, we found that the perfor-
mance of the detection CNN can be quickly maximized
at low SNR (typically after only 10 epochs) while retain-
ing performance at high SNR. That’s why we choose high
SNR (SNR=20 and 30 for BBH and BNS respectively)
to generate training data and test data for ensuring basic
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FIG. 2. Inserted into simulated LIGO noise are representa-
tive signals from binary neutron star (BNS) and binary black
hole (BBH) systems. (Upper panel) Presented is a whitened,
noise-free temporal sequence representing a gravitational-
wave signal from a binary neutron star system with con-
stituent masses of m1 = 2.94M⊙ and m2 = 1.5M⊙, featur-
ing an optimal signal-to-noise ratio (SNR) of 30. The blue
curve illustrates the same gravitational-wave signal superim-
posed with additive whitened simulated LIGO noise with unit
variance. This time series serves as an exemplar within the
dataset utilized for training, validation, and testing of the
convolutional neural network. (Lower panel) Analogous to
the upper panel, this display pertains to a binary black hole
gravitational-wave signal characterized by component masses
of m1 = 15M⊙ and m2 = 7M⊙, with an optimal SNR of 20.
(Note: Λ = 0 for black holes.)

performances of our models.

III. THE NEURAL NETWORK

A. Model architecture

The convolutional neural networks (CNN) and Resid-
ual networks (ResNet50, ResNet101, and ResNet152)
serve as the foundational models for the two-detector
system discussed. ResNet addresses the vanishing or ex-
ploding gradient problem commonly encountered in deep
networks by introducing residual learning. Instead of di-
rectly mapping the input to the desired output H(x),
ResNet learns the residual function F (x) = H(x) − x,

enabling the network to model H(x) = F (x) + x. This
formulation facilitates efficient training of very deep neu-
ral networks by preserving gradient flow through identity
shortcut connections, which bypass one or more layers
without additional parameters. These shortcuts mitigate
the degradation problem, ensure stable gradient propaga-
tion, and allow deeper architectures to achieve improved
representation learning and generalization performance.
ResNet’s innovative design has set a new standard for
deep network architectures in terms of scalability and
accuracy. The overarching architecture consists of sev-
eral independent branches of residual blocks, each corre-
sponding to the SNR time series of a distinct interferom-
eter. The primary distinction among the three ResNet
models lies in the number of residual blocks they contain.
As depicted in Figure III, a typical ResNet architecture
comprises four residual layers, with varying quantities of
residual blocks across each layer depending on the model.
Specifically, in the ResNet architectures, the configura-
tions are as follows: ResNet([3, 4, 6, 3]), ResNet([3, 4, 23,
3]), and ResNet([3, 8, 36, 3]).The architecture of the de-
tection CNN is notably simpler. It is composed of three
convolutional layers interspersed with three pooling lay-
ers, culminating in two fully connected dense layers. The
respective filter sizes for the convolutional layers are 16,
32, 64, and 128, while the dense layers have sizes of 64
and 2, as illustrated in Figure II. The initial layer serves
as the neural network’s input, which is a one-dimensional
time-series vector (having a dimension of 8192 for BBH
scenarios). The network concludes with a softmax output
layer that calculates the inferred class probabilities.
In the course of training, we incorporate a dropout

layer between each dense layer within the combiner sub-
network to mitigate overfitting on the training dataset.
Subsequently, a sigmoid activation layer is applied fol-
lowing the final dense layer to restrict predictions to a
range between 0 and 1. Notably, omitting this activa-
tion during inference has demonstrated effectiveness in
addressing the resolution constraints inherent to 32-bit
precision [52], thereby allowing our ranking statistic to
remain unbounded. Additionally, a custom layer is in-
troduced before the sigmoid activation layer, which di-
vides the output of the last dense layer by a factor of 4.
This measure serves to prevent the sigmoid layer from
rounding predictions to 0 or 1 during the training phase.

B. Training

To construct and train the neural networks, we em-
ployed PyTorch, which offers a high-level programming
framework to interface with the PyTorch deep-learning
library (https://pytorch.org/). The network’s training
utilized the training and validation datasets detailed in
Sec. II C. For optimization, we implemented stochastic
gradient descent with an adaptive learning rate, utilizing
the ADAM approach [53] alongside the AMSgrad modi-
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Layer Array Type Size

Input Matrix 1 × 2 × 16384

Conv2D + ELU + BatchNorm Matrix 8 × 2 × 16353

MaxPool2D Matrix 8 × 2 × 2044

Conv2D + ELU + BatchNorm Matrix 16 × 2 × 2029

Conv2D + ELU + BatchNorm Matrix 16 × 2 × 2014

Conv2D + ELU + BatchNorm Matrix 32 × 2 × 1999

Conv2D + ELU + BatchNorm Matrix 64 × 2 × 1992

MaxPool2D Matrix 64 × 2 × 332

Conv2D + ELU + BatchNorm Matrix 64 × 2 × 325

Conv2D + ELU + BatchNorm Matrix 128 × 2 × 322

Conv2D + ELU + BatchNorm Matrix 128 × 2 × 319

MaxPool2D Matrix 128 × 2 × 79

Flatten Vector 20224

Linear + ELU + Dropout Vector 64

Linear Vector 2

Output Vector 2

TABLE II. The Architecture of CNN

Layer Array Type Channels

Input Matrix 1

Conv2D + ReLU + BatchNorm Matrix 64

MaxPool2D Matrix 64

Residual Layer 1 Matrix 256

MaxPool2D Matrix 256

Residual Layer 2 Matrix 512

MaxPool2D Matrix 512

Residual Layer 3 Matrix 1024

MaxPool2D Matrix 1024

Residual Layer 4 Matrix 2048

AvgPool2D Matrix 2048

Flatten Vector -

Linear + ReLU + Dropout Vector -

Linear + ReLU + Dropout Vector -

Linear Vector -

Output Vector 2

TABLE III. The Architecture of ResNet

fication. In the training of the neural networks, an initial
learning rate of 0.001 was employed, with batch sizes
designated as 16 for BBH and 8 for BNS. The training
process was conducted using an NVIDIA GeForce RTX
4090, and the mini-batch size was dynamically adjusted
based on the characteristics of the GPU and the datasets.
Sparse categorical cross-entropy was utilized as the loss
function.

FIG. 3. ROC curves for test data sets containing BBH(upper)
and BNS(lower) GW signals with optimal SNR,opt = 5, 10,
15, 20. The true alarm probability is shown versus the false
alarm probability estimated from the output of the convolu-
tional neural network.

IV. RESULTS

We assess the performance of the detection neural net-
work by constructing and examining the receiver oper-
ator characteristic (ROC) curves for the BBH and BNS
signal classes, for a given SNR. A ROC curve represents
the fraction of signals identified correctly as their respec-
tive class, BBH or BNS (true alarm probability), versus
the fraction of samples identified incorrectly as signals
of the particular class (false alarm probability). We cal-
culate the ROC curves with the Python scikit-learn li-
brary (https://scikitlearn.org), which constructs empir-
ical ROC curves. An empirical ROC curve is a plot of
the true alarm probability (TAP) versus the false alarm
probability (FAP) for all possible thresholds, that is, each
point on the ROC curve represents a different cut-off
value. Thresholds that result in low FAP also tend to
result in low TAP. As the TAP increases, the FAP in-
creases as well. A ranking statistic is considered superior
to another if at a fixed FAP it reaches a higher TAP (or
sensitivity). We varied the optimal SNR from 1 to 20 in
integer steps of 1 and the classifier was applied to inputs
with approximately equal fractions of each GW signal
class (Noise, BBH Signal, BNS Signal).

Fig.3 shows the ROC curves calculated for test data
sets containing BBH and BNS GW signals. These re-
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FIG. 4. Sensitivity curves illustrating the ability of the neural
network to identify BNS(lower) and BBH(upper) GW signals.
The true alarm probability is plotted as a function of the
optimal SNR for false alarm probability. The figure shows
the sensitivity of detecting GW signals embedded in Gussian
noise from the test data set.

sults are similar to the corresponding ROC curves in the
case of simulated Gaussian noise [33], and indicate that
the neural network is again more sensitive to detecting
GWs from BBH than BNS mergers. It is seen that the
CNN achieves a maximal sensitivity for BBH signals with
optimal SNR 10 for FAP≥ 10−1 (Fig.4,upper window).
On the other hand, it don’t reaches a maximal sensitiv-
ity for BNS signals with optimal SNR=30 (Fig.4, lower
window), namely our model’s performance doesn’t reach
that level as in [33], which is mostly caused by the insuf-
ficience of dataset quantity. Note that since the TAP is a
function of the FAP, it also reaches a maximal sensitivity
for BNS signals with lower optimal SNR at a higher FAP.
For instance, at SNR opt = 14 the performance is similar
to that at SNR opt = 18.

Figure 5 illustrates the comparative analysis of meth-
ods applied in BBH using the CNN model.Traditional
approaches(upper) exhibit considerable robustness con-
cerning training accuracy and testing performance than
on-the-fly data augmentation(lower). Notably, Method
1 exhibits slightly enhanced performance attributed to
its extensive pre-computed dataset that offers improved
feature space coverage. Nonetheless, this benefit results
in a substantially higher computational time (T1 ≫ T2)
and increased storage demands, as the method neces-
sitates the pre-generation and storage of all augmented

FIG. 5. Method comparison illustrates the compara-
tive analysis of methods applied in BBH using the CNN
model.Traditional approaches(upper) exhibit considerable ro-
bustness concerning training accuracy and testing perfor-
mance than on-the-fly data augmentation(lower).

datasets.Conversely, Method 2 diminishes computational
demands by dynamically producing augmented data
throughout the training process, as demonstrated by the
expedited convergence in training and its comparable ef-
ficacy under reduced SNR conditions. The ROC curves
and sensitivity analyses indicate that although Method 1
attains marginally higher AUC values and sensitivity at
constant false-alarm probabilities, Method 2 maintains
competitiveness, especially at elevated SNR levels. The
equilibrium between efficiency and performance renders
on-the-fly data augmentation a compelling option for sce-
narios with restricted resources.

For the model comparison, The sensitivity curves
for gravitational wave (GW) detection using CNN,
ResNet50, and ResNet101 models actually demonstrate
no too much differences in performance across varying
false-alarm probabilities (FAP) and signal-to-noise ra-
tios (SNR) as we see in Figure.6. The three models ex-
hibits reasonable sensitivity which improves as the SNR
increases. The additional depth of ResNet seems don’t
allows for more comprehensive feature representation, en-
abling consistent and robust performance even at lower
SNRs. Whereas, Figure.6 is adopted the method 1(tra-
dition data generation). When we compare these models
in method 2, the results indicate that ResNet-based ar-
chitectures significantly outperform CNNs in GW detec-
tion tasks, with ResNet101 providing optimal sensitivity
at the cost of increased computational complexity com-
pared to ResNet50. This highlights the importance of
deeper architectures in achieving enhanced performance
for challenging detection scenarios.
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FIG. 6. Model comparison

V. SUMMARY AND DISCUSSION

In this study, we employ deep learning techniques
for gravitational wave (GW) detection tasks, illustrat-
ing their potential to attain high sensitivity and robust-
ness in identifying signals from binary black hole (BBH)
and binary neutron star (BNS) mergers. We assess the
performance of neural networks using CNN, ResNet50,
ResNet101, and ResNet152 architectures, comparing
their sensitivity curves across various false alarm prob-
abilities (FAPs) and signal-to-noise ratios (SNRs). Ad-
ditionally, through the utilization of on-the-fly data aug-
mentation and analysis via receiver operating character-
istic (ROC) curves, this work offers insights into the bal-
ance between computational efficiency and detection ef-
ficacy.

The training dataset was carefully assembled to include
5000 samples of both signal-plus-noise and pure noise,
maintaining consistent SNR values of 20 for BBH signals
and 30 for BNS signals. This configuration facilitated
the exposure of the network to a diverse array of sam-
ples, promoting generalization. Meanwhile, the testing
dataset contained 1,000 samples and was specifically de-
signed to evaluate the model’s proficiency in accurately
classifying previously unseen data. Although this con-
figuration represents a substantial advancement towards
effective GW detection, the relatively small dataset, par-
ticularly regarding BNS signals, seems to have restricted
the models’ efficacy. This limitation is most apparent in
the less-than-optimal sensitivity observed for BNS detec-
tions, underscoring the necessity for additional data aug-
mentation or alternative strategies to improve the repre-
sentation of BNS signals in the training set.

The empirical ROC curves developed in this research
demonstrate that the models attained superior TAPs for
BBH signals relative to BNS signals at analogous FAPs.
For instance, the CNN model achieves peak sensitivity
for BBH signals at an optimal SNR of 10 when FAP
≥ 0.1.Nonetheless, the model fails to attain a compara-
ble maximum sensitivity for BNS signals, even when the
SNR is optimally set at 30. This gap highlights the dif-

ficulty in detecting BNS signals, potentially due to their
inadequate representation in the training dataset and the
inherent disparities in waveform characteristics between
BBH and BNS mergers.

It is also notable that at lower SNRs, the TAP for
BNS signals remains similar for a range of optimal SNR
values (e.g., SNR=14 and SNR=18). This implies that
the network’s sensitivity does not significantly improve
with increasing SNR under certain conditions, pointing
to potential limitations in the network’s feature extrac-
tion capabilities or the quality of the training data. These
findings align with previous works, such as [33], which re-
port comparable challenges in detecting BNS signals in
simulated Gaussian noise.

Integrating on-the-fly data augmentation markedly en-
hanced training efficiency and diminished computational
overhead relative to conventional pre-computed data gen-
eration techniques. Although Method 1 (traditional aug-
mentation) yields slightly superior area under the curve
(AUC) scores and sensitivity at fixed False Alarm Proba-
bilities (FAPs) because of its comprehensive feature space
coverage, it incurs considerable computational and stor-
age requirements. In contrast, Method 2 (on-the-fly aug-
mentation) dynamically generates augmented data dur-
ing training, resulting in faster convergence and compet-
itive performance, especially under reduced SNR condi-
tions. The trade-off between efficiency and performance
is critical for resource-constrained environments. The re-
sults indicate that Method 2 is a compelling alternative
for scenarios where computational resources or storage
capacity are limited. Additionally, its ability to main-
tain competitive sensitivity at higher SNR levels makes
it a viable choice for real-time GW detection applica-
tions. These observations highlight the importance of
selecting appropriate data augmentation techniques to
balance computational requirements and model perfor-
mance.

The sensitivity curves for CNN, ResNet50, ResNet 101
and ResNet152 architectures reveal notable differences
in their ability to detect GW signals. While all three
models demonstrate reasonable sensitivity improvements
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with increasing SNR, the ResNet architectures consis-
tently outperform the CNN, particularly at lower FAPs.
ResNet50 and ResNet101 leverage their deeper architec-
tures and residual connections to enhance feature repre-
sentation and mitigate vanishing gradient issues, result-
ing in higher TAPs at fixed FAPs. However, the ad-
ditional depth of ResNet101 does not always translate
to significant performance gains compared to ResNet50,
particularly when using traditional data augmentation
methods (Method 1). This observation suggests that
the marginal benefits of increased depth may diminish
beyond a certain point, especially when computational
complexity and training time are considered. On the
other hand, when employing on-the-fly data augmenta-
tion (Method 2), ResNet101 achieves optimal sensitivity,
highlighting the synergy between advanced architectures
and efficient data augmentation strategies.

Despite the promising results, several challenges and
limitations warrant further investigation:

• Dataset Quantity and Diversity: The limited size
and diversity of the training dataset, particularly
for BNS signals, constrain the models’ ability to
generalize. Future studies should focus on gener-
ating larger and more diverse datasets, potentially
incorporating real LIGO data to enhance the real-
ism and variability of training samples.

• BNS Signal Detection: The suboptimal perfor-
mance of the models in detecting BNS signals raises
questions about their ability to capture the unique
features of these waveforms. Investigating alter-
native network architectures or feature extraction
techniques tailored to BNS signals could improve
sensitivity.

• SNR Effects: The sensitivity analyses indicate that
the models’ performance varies significantly with
SNR. Further studies are needed to explore the re-
lationship between SNR and detection accuracy, in-
cluding adjustments to network hyperparameters
and training strategies to optimize performance
across a broader SNR range.

• Model Optimization: While ResNet101 achieves

the highest sensitivity, its increased computational
complexity poses challenges for real-time applica-
tions. Exploring lightweight architectures or prun-
ing techniques could help achieve a balance between
performance and efficiency.

• Combined Detection of BBH and BNS Signals: In-
tegrating BBH and BNS detection into a unified
framework could streamline GW detection work-
flows and enhance overall efficiency. Developing
models capable of distinguishing between these
classes while maintaining high sensitivity is an im-
portant avenue for future research.

This study demonstrates the potential of deep learn-
ing approaches for GW detection, leveraging CNN and
ResNet architectures to identify signals from BBH and
BNS mergers. The analysis of sensitivity curves and ROC
metrics reveals that while ResNet-based models outper-
form CNNs, their performance for BNS signals remains
suboptimal, primarily due to dataset limitations. On-
the-fly data augmentation emerges as a promising tech-
nique to enhance training efficiency and maintain com-
petitive performance, particularly under reduced SNR
conditions.
The findings underscore the importance of dataset

quality, network architecture, and data augmentation
methods in achieving robust GW detection. Future work
should focus on addressing the challenges of dataset di-
versity, BNS signal detection, and model optimization,
with a particular emphasis on integrating real LIGO data
and exploring unified frameworks for detecting BBH and
BNS signals. These efforts will contribute to the devel-
opment of scalable and efficient deep learning-based GW
detection systems, paving the way for advancements in
astrophysical research and multi-messenger astronomy.

VI. DATA AND CODES AVAILABILITY

The code we developed is based on https://github.
com/iphysresearch/GWData-Bootcamp. This paper
also motivated and refered by https://iphysresearch.
github.io/PhDthesis_html/.
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