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ABSTRACT

This paper explores the description of classic mechanical spaces within the framework of manifold
theory, and introduces the applications of Lagrangian mechanics and Hamiltonian mechanics on
differential manifolds. Initially, the concept and fundamental properties of differential manifolds are
elucidated, emphasizing the significance of manifolds in mechanical problems. Subsequently, the
paper discusses in details the representation methods of configuration space and velocity phase space
on differential manifolds, and analyzes the evolution of Lagrangian mechanics and Hamiltonian
mechanics in configuration space and phase space. In the discussion of Hamiltonian mechanics,
this paper introduces the concepts of exterior algebra forms and differential forms, as well as the
definition and characteristics of symplectic manifolds. Lastly, the paper explores the independence
of generalized coordinates and generalized momenta in phase space, and points out the influence of
dynamical equations on cotangent bundles and tangent bundles.
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1 Introduction

When studying mechanical problems, it is crucial to understand the context (space) in which we are investigating
the evolution of mechanical systems. We know that Lagrangian mechanics describes the motion of mechanical systems
using configuration space, while Hamiltonian mechanics deals with the geometry of phase space, studying mechanical
motion within phase space (of course, the application of phase space extends far beyond this). This article aims to
take a higher perspective, using mathematical knowledge of differential manifolds to provide further explanation of
the mechanical space, delve into why mechanical systems evolve in these spaces, and explain the issue of coordinate
independence in mechanical spaces.

2 Lagrangian mechanic on manifolds

When considering the shape of space, is there a unified language to describe all spaces? For example, those of
us on Earth may perceive the Earth’s surface as two-dimensional, but when observed from space, it appears to be a
two-dimensional sphere. How should we describe our world and other spaces? It is important to emphasize that the
space in our physical reality is not flat and linear; it possesses a generally curved topological structure. Furthermore,
when studying mechanical systems, we no longer confine our investigations to the three-dimensional Euclidean space.
Instead, we use methods such as configuration space and phase space to gain a deeper understanding of mechanical
systems. Therefore, it is necessary for us to understand the essence of "space," and manifold theory is used to describe
it.
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2.1 Differential manifolds

2.1.1 Definition

A set M with a finite chart, where each point can be represented in one chart, admits a differential manifold
structure on M . For any point p ⊂ M , there exists a neighborhood U ⊂ M of x such that U is homeomorphic to
an n-dimensional Euclidean space Rn, then M is called an n-dimensional manifold. Alternatively, a manifold is a
topological space locally equivalent to Euclidean space, which is a generalization of smooth surfaces.

An chart consists of open sets U in the Euclidean coordinate space q = (q1, · · · , qn) and a one-to-one mapping
φ : U → φU ⊂ M onto some subset of M .

If two charts U and U ′ contain points p and p′ in M with the same image, then p and p′ each have neighborhoods
V ⊂ U and V ′ ⊂ U ′ respectively, with the same image in M . This yields a mapping from a subset V ⊂ U of one
chart to a subset V ′ ⊂ U ′ of another chart: φ′−1φ : V → V ′.

This is a mapping from a region V in Euclidean space q to a region V ′ in Euclidean space q′, given by n
n-tuple functions: q′ = q′(q), (q = q (q′)). If q′(q) and q (q′) are both differentiable, these two charts are said to be
compatible.

An atlas is the union of charts. A differential manifold is a class of equivalent atlases. Therefore, by using
differential manifolds, we can extend a series of results from classical mathematical analysis, classical stochastic
analysis, classical harmonic analysis, functional analysis, etc., to "non-linear spaces". By performing calculations
locally equivalent to Rn, manifolds allow for differential operations in "non-linear spaces". Moreover, every manifold
can be embedded in some Euclidean space, and any open set in Rn is an n-dimensional manifold.[3]

Figure 1: chart

2.1.2 Tangent space

Let M be a k-dimensional manifold embedded in En. At each point x, there exists a k-dimensional tangent space
TMx. Vectors in the tangent space TMx with x as the starting point are called tangent vectors of M at x. The tangent
vectors of M at x form a linear space TMx, which is also known as the tangent space of M at x.

2.1.3 Tangent bundle

The union of tangent spaces
∪

x∈M TMx at each point of M has a natural differential manifold structure, with
a dimension twice that of M . This manifold is called the tangent bundle of M , denoted as TM . Points in TM
correspond to vectors tangent to M at some point x. Local coordinates of TM are given by: let q1, · · · , qn be
local coordinates on M , and ξ1, · · · , ξn be the components of the tangent vectors in this coordinate system, then
(q1, · · · , qn; ξ1, · · · , ξn), which consist of 2n numbers, form a local coordinate system of TM .
It should be noted that using local coordinates to handle differential manifolds is analogous to considering a set

2



Classic mechanical space on manifolds

Figure 2: atlas

of basis vectors for linear spaces. In theoretical mechanics, using generalized coordinates is essentially studying
mechanical systems using local coordinates on manifolds. Therefore, local coordinates are independent bases, and
they determine the dimension of locally nested submanifolds.

The mapping p : TM → M that maps a tangent vector ξ to the tangent point x ∈ U is called the natural
projection. The pre-image p−1(x) of point x ∈ M under the natural projection is the tangent space TMx, which is
called the fiber of the tangent bundle at point x.

Figure 3: tangent bundle

2.2 Configuration space or velocity phase space

In Lagrangian mechanics, the motion of mechanical systems is described in configuration space, which has
a differential manifold structure. For N particles, we can use a set of generalized coordinates (q1, q2, · · · , qn) to
form a set of local coordinates on the manifold. Let M be a differential manifold, TM be its tangent bundle, and
L : TM → R be a differentiable function. A mapping γ : R → M is called a motion in a Lagrangian dynamical
system with configuration manifold M and Lagrangian function L(q, q̇, t) if it satisfies:

d

dt

∂L

∂q̇
=

∂L

∂q
.

However, when we describe the evolution in configuration space under Lagrangian mechanics, rather than the
evolution in velocity phase space, although the function L(q, q̇, t) requires two variables to determine, during the
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evolution, the generalized coordinates and generalized velocities are not independent. There exists a constraint

q̇a = va =
dqa
dt

describing the evolution in configuration space rather than in velocity phase space. For the tangent bundle (i.e.,
velocity phase space) of the configuration space, the tangent vectors (generalized velocities) should be independent
of the local coordinates (generalized coordinates). From a kinematic perspective, the generalized coordinates and
generalized velocities at initial conditions do not depend on time. However, once we consider time evolution, the
dimension of the tangent bundle is reduced by half, or the configuration manifold induces a determined trajectory
φ(t)[4]. The constraint can be viewed as being imposed on a n + 1 dimensional manifold by adding time t as a
spatial dimension, such that the states of N particle systems at different times are embedded submanifolds in the n+1
dimensional manifold[2].

Therefore, in studying the evolution of mechanical systems, we assume that the manifold evolves over time,
adding a time dimension. At this point, the generalized velocities are no longer independent, but are the time deriva-
tives of the generalized coordinates. Hence, the Lagrangian function is written as L(q, q̇, t).

3 Hamiltonian mechanics

Hamiltonian mechanics is the geometry of phase space, which, as the cotangent bundle of configuration mani-
fold, naturally possesses a symplectic structure, along with its Hamiltonian function. For each one-parameter canon-
ical transformation in phase space, the symplectic structure remains invariant. For every one-parameter symplectic
diffeomorphism group that preserves the Hamiltonian function, there exists a motion integral.

3.1 Exterior algebra form

In the previous section, it was mentioned that tangent vectors in the tangent space are essentially arrows with
limited operational flexibility. However, from the perspective of duality, considering linear functions in the tangent
space allows for more flexibility, as functions can be subjected to addition, multiplication, scalar multiplication, and
composition operations. Once the concept of linear functions on the tangent space is introduced, one can further
consider multilinear functions. Multilinear functions have multiple parameters, and they are linear with respect to
each parameter.

Let Rn be an n-dimensional real vector space. A k-th exterior form (k-form) in the tangent space is a k-form
skew-symmetric function defined on k vectors. Naturally, a 1-form is a linear function ω : Rn → R, which is the
duality of vectors.

3.2 Differential form

For a manifold M , the k-differential form ωk |x at point x is the k-exterior form of M on the tangent space TMx，
to wit, a k-form skew- symmetric function defined on k vectors at point x where k vectors ξ1, . . . , ξn tangent to M .
For Rn space, considering x1, . . . , xn : Rn → R as vector space Rn on the manifold M , fixing a point x, there are
n 1-forms dx1, . . . , dxn forming a basis for the 1-form space on the tangent space TRn

x. Considering basic forms’
wedge product:

dxi1 ∧ · · · ∧ dxik , i1 < · · · < ik.

These Ck
n k-forms form a basis for the k-form space on TRn

x , so every k-form on TRn
x can be expressed as:∑

i1<···<ik

ai1,··· ,ikdxi1 ∧ · · · ∧ dxik .

3.3 Symplectic Manifold

3.3.1 Definition

For a 2n-dimensional differentiable manifold M , if there exists a symplectic structure on M , namely a closed
non-degenerate 2-differential form ω2, such that dω2 = 0 and ∀ξ ̸= 0, ∃η : ω2(ξ,η) ̸= 0

(
ξ,η ∈ TM2n

x

)
, then(

M2n, ω2
)

is called a symplectic manifold.
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3.3.2 Cotangent Bundle and Symplectic Structure

For an n-dimensional manifold V , the 1-forms on TVx are called cotangent vectors of V at x, and the cotangent
vectors at x form an n-dimensional vector space, denoted as T ∗Vx, the cotangent space. The union of all cotangent
spaces on the manifold is the cotangent bundle, denoted as T ∗V , which naturally has a 2n-dimensional differentiable
manifold structure. Considering q as a local coordinate system on V , the local coordinate system of TV can be given
by (q1, · · · , qn; p1, · · · , pn). And there exists a natural symplectic structure on the cotangent bundle. Proof is given in
the appendix.

3.4 Phase Space

For the configuration manifold M , q̇ is a tangent vector on M , and the generalized momentum p = ∂L/∂q̇ is a
cotangent vector. Thus, the phase space formed by p, q constitutes the cotangent bundle of M .

Figure 4: phase space

3.5 Independence of Generalized Coordinates and Momenta

Regarding phase space, i.e., the cotangent bundle, the independence of local coordinates indicates the indepen-
dence of generalized coordinates and momenta. However, why do generalized coordinates and momenta remain
independent due to time evolution in phase space? Time evolution does not directly affect the local coordinate basis
on the cotangent bundle; compared to the tangent bundle, time evolution changes the dimension of the tangent bundle,
influencing the independence between generalized velocities and generalized coordinates. Thus, studying mechanical
systems on the tangent bundle (velocity phase space) is not a good choice. Here, we focus on the definition of
generalized coordinates p = ∂L/∂q̇, naturally representing p as a 1-form (dual) of the tangent vector q̇, derived from
the Legendre transformation. This is determined by the initial conditions and remains part of the initial conditions
in the subsequent dynamic process. As the dynamic equations are of second order, they do not directly constrain the
first derivative (velocity), which is part of the initial conditions[1]. The phase space must contain information about
the first derivatives, allowing us to construct independent quantities p. Subsequent dynamic processes do not directly
affect the cotangent bundle; they only affect the tangent bundle.

In the Hamiltonian formalism, we seek a curve in the cotangent bundle, which is the integral curve of the vector
field , as the evolution of the initial state. This curve can be projected onto the base manifold to obtain a curve, but the
reverse is not true; a curve in the base manifold cannot naturally lead to a curve in the cotangent bundle. Therefore,
the dependence of p and q on the parameter t needs to be solved simultaneously. However, in the tangent bundle,
the situation is reversed. A curve in the base manifold can naturally correspond to a curve in the tangent bundle, and
the corresponding method is naturally to take the tangent vector of the curve. Therefore, the Lagrangian formalism
essentially seeks a curve in the base manifold, where the tangent vectors of the curve are not independent of the curve
itself.

The relationship between the tangent bundle and the cotangent bundle can be further discussed, but it goes beyond
the scope of this discussion.
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4 Conclusion

If we only focus on mathematics in Rn, we will never use abstract mathematical concepts such as manifolds,
tangent spaces, cotangent spaces, etc. However, it is these theories that provide us with powerful tools for studying the
real world and mechanics, helping us solve various problems that classical mechanics cannot tackle. By understanding
the mechanical space on manifolds, we can gain a deeper understanding of classical mechanics and better solve various
problems in future studies.

A Proof: There exists a natural symplectic structure on the cotangent bundle

We first define a specific 1-form on T ∗V . Let ξ ∈ T (T ∗V )p be a vector tangent to the cotangent bundle at
p ∈ T ∗Vx. The natural projection f : T ∗V → V induces a differential f∗ : T (T ∗V ) → TV , which maps ξ to a
vector tangent to V at x, denoted as f∗ξ. Now, let’s define the 1-form ω1(ξ) = p(f∗ξ) on T ∗V . In the given local co-
ordinate system, ω1 = pdq. The closed form ω2 = dω1 is non-degenerate, and the form ω1 is referred to as the action.

The natural relationship between a tangent vector and a cotangent vector at the same point is pairing. For any
locally defined function defining a cotangent vector, taking the directional derivative in the direction defined by any
tangent vector yields a real number. This is a non-degenerate bilinear pairing, inducing the duality between the
tangent space and cotangent space at that point, as well as between the tangent bundle and cotangent bundle. Since
they are dual, for (paracompact) differential manifolds, the tangent bundle and cotangent bundle as real vector bundles
are isomorphic. However, they are generally not canonically isomorphic, meaning that the specific way they are
isomorphic may not be equivalent depending on the implementation.

Figure 5: proof
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